Style: seaborn-ticks¶
Style Sheet¶
Note that this is not the same syntax as the original style sheet.
axes.axisbelow: True
axes.edgecolor: .15
axes.facecolor: white
axes.grid: False
axes.labelcolor: .15
axes.linewidth: 1.25
figure.facecolor: white
font.family: [sans-serif]
font.sans-serif: [Arial, Liberation Sans, Bitstream Vera Sans, sans-
serif]
grid.color: .8
grid.linestyle: -
image.cmap: Greys
legend.frameon: False
legend.numpoints: 1
legend.scatterpoints: 1
lines.solid_capstyle: round
text.color: .15
xtick.color: .15
xtick.direction: out
xtick.major.size: 6.0
xtick.minor.size: 3.0
ytick.color: .15
ytick.direction: out
ytick.major.size: 6.0
ytick.minor.size: 3.0
Example Source Code¶
import matplotlib
from matplotlib.colors import ListedColormap
import numpy as np
import viscid
from viscid.plot import vpyplot as vlt
import matplotlib.pyplot as plt
matplotlib.rcParams.update(matplotlib.rcParamsDefault)
fld = viscid.empty((np.linspace(1, 5, 64), np.linspace(1, 5, 64)),
name="F", pretty_name="Generic Field")
X, Y = fld.get_crds(shaped=True)
fld[:, :] = 1e-4 * (np.sin(X)**10 + np.cos(10 + X * Y) * np.cos(X))
with plt.style.context(("seaborn-ticks",)):
fig = plt.figure(figsize=(11, 7))
ax = plt.subplot2grid((2, 9), (0, 0), rowspan=2)
pal = vlt.get_current_colorcycle()
size = 1
n = len(pal)
ax.imshow(np.arange(n).reshape(n, 1), cmap=ListedColormap(list(pal)),
interpolation="nearest", aspect="auto")
ax.set_xticks([])
ax.set_yticks([])
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_ylabel("Color Cycle")
plt.subplot2grid((2, 9), (0, 1), rowspan=2, colspan=4)
x = np.linspace(0, 2 * np.pi)
for phase in np.linspace(0, np.pi / 4, n):
plt.plot(x, (1 + np.sqrt(phase)) * np.sin(x - phase),
label=r"$\phi = {0:.2g}$".format(phase))
plt.legend(loc=0)
plt.subplot2grid((2, 9), (0, 5), colspan=4)
vlt.plot(fld)
plt.title("Sequential")
plt.subplot2grid((2, 9), (1, 5), colspan=4)
vlt.plot(fld, lin=0)
plt.title("Symmetric")
vlt.auto_adjust_subplots(subplot_params=dict(top=0.93, bottom=0.1))
txt = ("Matplotlib Version: {0}\nViscid Version: {1}"
"".format(matplotlib.__version__, viscid.__version__))
fig.text(0.05, 0.01, txt, color='grey', size='small')