3D Plots (Mayavi)

This best way to explain how to use Mayavi is by example, so here is the Mayavi part of the test suite tests/test_mvi.py. Check here for a discussion of Viscid’s wrapper functions and workarounds.

Note

Installing Mayavi can be tricky. Please read this before attempting to install it.

../_images/mvi-000.png

#!/usr/bin/env python
"""Test the gamut of Mayavi plots"""

from __future__ import print_function
import argparse
import os
import sys

from viscid_test_common import next_plot_fname, xfail

import numpy as np
import viscid
from viscid import sample_dir
from viscid import vutil
try:
    from viscid.plot import vlab
except ImportError:
    xfail("Mayavi not installed")


# In this test, the OpenGGCM reader needs to read the log file
# in order to determine the crds when doing the cotr transformation.
# In general, this flag is useful to put in your viscidrc file, see
# the corresponding page in the tutorial for more information.
viscid.readers.openggcm.GGCMFile.read_log_file = True
viscid.readers.openggcm.GGCMGrid.mhd_to_gse_on_read = "auto"


def _main():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument("--show", "--plot", action="store_true")
    parser.add_argument("--interact", "-i", action="store_true")
    args = vutil.common_argparse(parser)

    f3d = viscid.load_file(os.path.join(sample_dir, 'sample_xdmf.3d.[0].xdmf'))
    f_iono = viscid.load_file(os.path.join(sample_dir, "sample_xdmf.iof.[0].xdmf"))

    b = f3d["b"]
    v = f3d["v"]
    pp = f3d["pp"]
    e = f3d["e_cc"]

    vlab.mlab.options.offscreen = not args.show
    vlab.figure(size=(1280, 800))

    ##########################################################
    # make b a dipole inside 3.1Re and set e = 0 inside 4.0Re
    cotr = viscid.Cotr(time='1990-03-21T14:48', dip_tilt=0.0)  # pylint: disable=not-callable
    moment = cotr.get_dipole_moment(crd_system=b)
    isphere_mask = viscid.make_spherical_mask(b, rmax=3.1)
    viscid.fill_dipole(b, m=moment, mask=isphere_mask)
    e_mask = viscid.make_spherical_mask(b, rmax=4.0)
    viscid.set_in_region(e, 0.0, alpha=0.0, mask=e_mask, out=e)

    ######################################
    # plot a scalar cut plane of pressure
    pp_src = vlab.field2source(pp, center='node')
    scp = vlab.scalar_cut_plane(pp_src, plane_orientation='z_axes', opacity=0.5,
                                transparent=True, view_controls=False,
                                cmap="inferno", logscale=True)
    scp.implicit_plane.normal = [0, 0, -1]
    scp.implicit_plane.origin = [0, 0, 0]
    scp.enable_contours = True
    scp.contour.filled_contours = True
    scp.contour.number_of_contours = 64
    cbar = vlab.colorbar(scp, title=pp.name, orientation='vertical')
    cbar.scalar_bar_representation.position = (0.01, 0.13)
    cbar.scalar_bar_representation.position2 = (0.08, 0.76)

    ######################################
    # plot a vector cut plane of the flow
    vcp = vlab.vector_cut_plane(v, scalars=pp_src, plane_orientation='z_axes',
                                view_controls=False, mode='arrow',
                                cmap='Greens_r')
    vcp.implicit_plane.normal = [0, 0, -1]
    vcp.implicit_plane.origin = [0, 0, 0]

    ##############################
    # plot very faint isosurfaces
    vx_src = vlab.field2source(v['x'], center='node')
    iso = vlab.iso_surface(vx_src, contours=[0.0], opacity=0.008, cmap='Pastel1')

    ##############################################################
    # calculate B field lines && topology in Viscid and plot them
    seedsA = viscid.SphericalPatch([0, 0, 0], [2, 0, 1], 30, 15, r=5.0,
                                   nalpha=5, nbeta=5)
    seedsB = viscid.SphericalPatch([0, 0, 0], [1.9, 0, -20], 30, 15, r=5.0,
                                   nalpha=1, nbeta=5)
    seeds = np.concatenate([seedsA, seedsB], axis=1)
    b_lines, topo = viscid.calc_streamlines(b, seeds, ibound=3.5,
                                            obound0=[-25, -20, -20],
                                            obound1=[15, 20, 20], wrap=True)
    vlab.plot_lines(b_lines, scalars=viscid.topology2color(topo))

    ######################################################################
    # plot a random circle at geosynchronus orbit with scalars colored
    # by the Matplotlib viridis color map, just because we can; this is
    # a useful toy for debugging
    circle = viscid.Circle(p0=[0, 0, 0], r=6.618, n=128, endpoint=True)
    scalar = np.sin(circle.as_local_coordinates().get_crd('phi'))
    surf = vlab.plot_line(circle.get_points(), scalars=scalar, clim=0.8,
                          cmap="Spectral_r")

    ######################################################################
    # Use Mayavi (VTK) to calculate field lines using an interactive seed
    # These field lines are colored by E parallel
    epar = viscid.project(e, b)
    epar.name = "Epar"
    bsl2 = vlab.streamline(b, epar, seedtype='plane', seed_resolution=4,
                           integration_direction='both', clim=(-0.05, 0.05))

    # now tweak the VTK streamlines
    bsl2.stream_tracer.maximum_propagation = 20.
    bsl2.seed.widget.origin = [-11, -5.0, -2.0]
    bsl2.seed.widget.point1 = [-11, 5.0, -2.0]
    bsl2.seed.widget.point2 = [-11.0, -5.0, 2.0]
    bsl2.streamline_type = 'tube'
    bsl2.tube_filter.radius = 0.03
    bsl2.stop()  # this stop/start was a hack to get something to update
    bsl2.start()
    bsl2.seed.widget.enabled = False

    cbar = vlab.colorbar(bsl2, title=epar.name, label_fmt='%.3f',
                         orientation='horizontal')
    cbar.scalar_bar_representation.position = (0.15, 0.01)
    cbar.scalar_bar_representation.position2 = (0.72, 0.10)

    ###############################################################
    # Make a contour at the open-closed boundary in the ionosphere
    seeds_iono = viscid.Sphere(r=1.063, pole=-moment, ntheta=256, nphi=256,
                               thetalim=(0, 180), philim=(0, 360), crd_system=b)
    _, topo_iono = viscid.calc_streamlines(b, seeds_iono, ibound=1.0,
                                           nr_procs='all',
                                           output=viscid.OUTPUT_TOPOLOGY)
    topo_iono = np.log2(topo_iono)

    m = vlab.mesh_from_seeds(seeds_iono, scalars=topo_iono, opacity=1.0,
                             clim=(0, 3), color=(0.992, 0.445, 0.0))
    m.enable_contours = True
    m.actor.property.line_width = 4.0
    m.contour.number_of_contours = 4

    ####################################################################
    # Plot the ionosphere, note that the sample data has the ionosphere
    # at a different time, so the open-closed boundary found above
    # will not be consistant with the field aligned currents
    fac_tot = 1e9 * f_iono['fac_tot']

    m = vlab.plot_ionosphere(fac_tot, bounding_lat=30.0, vmin=-300, vmax=300,
                             opacity=0.75, rotate=cotr, crd_system=b)
    m.actor.property.backface_culling = True

    ########################################################################
    # Add some markers for earth, i.e., real earth, and dayside / nightside
    # representation
    vlab.plot_blue_marble(r=1.0, lines=False, ntheta=64, nphi=128,
                         rotate=cotr, crd_system=b)
    # now shade the night side with a transparent black hemisphere
    vlab.plot_earth_3d(radius=1.01, night_only=True, opacity=0.5, crd_system=b)

    ####################
    # Finishing Touches
    # vlab.axes(pp_src, nb_labels=5)
    oa = vlab.orientation_axes()
    oa.marker.set_viewport(0.75, 0.75, 1.0, 1.0)

    # note that resize won't work if the current figure has the
    # off_screen_rendering flag set
    # vlab.resize([1200, 800])
    vlab.view(azimuth=45, elevation=70, distance=35.0, focalpoint=[-2, 0, 0])

    ##############
    # Save Figure

    # print("saving png")
    # vlab.savefig('mayavi_msphere_sample.png')
    # print("saving x3d")
    # # x3d files can be turned into COLLADA files with meshlab, and
    # # COLLADA (.dae) files can be opened in OS X's preview
    # #
    # # IMPORTANT: for some reason, using bounding_lat in vlab.plot_ionosphere
    # #            causes a segfault when saving x3d files
    # #
    # vlab.savefig('mayavi_msphere_sample.x3d')
    # print("done")

    vlab.savefig(next_plot_fname(__file__))

    ###########################
    # Interact Programatically
    if args.interact:
        vlab.interact()

    #######################
    # Interact Graphically
    if args.show:
        vlab.show()

    try:
        vlab.mlab.close()
    except AttributeError:
        pass

    return 0

if __name__ == "__main__":
    sys.exit(_main())

##
## EOF
##